Particle Swarm Optimization and Image Analysis
نویسندگان
چکیده
Particle Swarm Optimization (PSO) is a simple but powerful optimization algorithm, introduced by Kennedy and Eberhart (Kennedy 1995). Its search for function optima is inspired by the behavior of flocks of birds looking for food. Similarly to birds, a set (swarm) of agents (particles) fly over the search space, which is coincident with the function domain, looking for the points where the function value is maximum (or minimum). In doing so, each particle’s motion obeys two very simple difference equations which describe the particle’s position and velocity update. A particle’s motion has a strong random component (exploration) and is mostly independent from the others’; in fact, the only piece of information which is shared among all members of the swarm, or of a large neighborhood of each particle, is the point where the best value for the function has been found so far. Therefore, the search behavior of the swarm can be defined as emergent, since no particle is specifically programmed to achieve the final collective behavior or to play a specific role within the swarm, but just to perform a much simpler local task. This chapter introduces the basics of the algorithm and describes the main features which make it particularly efficient in solving a large number of problems, with particular regard to image analysis and to the modifications that must be applied to the basic algorithm, in order to exploit its most attractive features in a domain which is different from function optimization.
منابع مشابه
The application of Committee machine with particle swarm optimization to the assessment of permeability based on thin section image analysis
Permeability is the ability of porous rock to transmit fluids and one of the most important properties of reservoir rock because oil production depends on the permeability of reservoirs. Permeability is determined using a variety of methods which are usually expensive and time consuming. Reservoir rock properties with image analysis and intelligent systems has been used to reduce time and money...
متن کاملDevelopment of CMOS Image Sensor System based on Chaos Particle Swarm
Particle swarm optimization algorithm in solving complex functions, such as slow convergence, accuracy is not high, easily falling into local optimum problem. Based on the chaos optimization is introduced into particle swarm optimization algorithm, given the chaotic particle swarm optimization algorithm. In order to improve the image quality of CMOS image sensor, the image of the main noise sou...
متن کاملAn efficient approach for availability analysis through fuzzy differential equations and particle swarm optimization
This article formulates a new technique for behavior analysis of systems through fuzzy Kolmogorov's differential equations and Particle Swarm Optimization. For handling the uncertainty in data, differential equations have been formulated by Markov modeling of system in fuzzy environment. First solution of these derived fuzzy Kolmogorov's differential equations has been found by Runge-Kutta four...
متن کاملRemote Image Classification Using Particle Swarm Optimization
In order to have clarity in the satellite images we have used Particle Swarm Optimization technique. When incorporated with traditional clustering algorithms, problems such as local optima and sensitivity to initialization, are reduced, thus exploring a greater area using global search. This segmented image is further classified using Kappa coefficient. Keywords— Particle Swarm Optimization(PSO...
متن کاملISOGEOMETRIC STRUCTURAL SHAPE OPTIMIZATION USING PARTICLE SWARM ALGORITHM
One primary problem in shape optimization of structures is making a robust link between design model (geometric description) and analysis model. This paper investigates the potential of Isogeometric Analysis (IGA) for solving this problem. The generic framework of shape optimization of structures is presented based on Isogeometric analysis. By discretization of domain via NURBS functions, the a...
متن کاملA particle swarm optimization method for periodic vehicle routing problem with pickup and delivery in transportation
In this article, multiple-product PVRP with pickup and delivery that is used widely in goods distribution or other service companies, especially by railways, was introduced. A mathematical formulation was provided for this problem. Each product had a set of vehicles which could carry the product and pickup and delivery could simultaneously occur. To solve the problem, two meta-heuristic methods...
متن کامل